Imino Hydrogen Positions in Nucleic Acids from Density Functional Theory Validated by NMR Residual Dipolar Couplings

نویسندگان

  • Alexander Grishaev
  • Jinfa Ying
  • Ad Bax
چکیده

Hydrogen atom positions of nucleotide bases in RNA structures solved by X-ray crystallography are commonly derived from heavy-atom coordinates by assuming idealized geometries. In particular, N1-H1 vectors in G and N3-H3 vectors in U are commonly positioned to coincide with the bisectors of their respective heavy-atom angles. We demonstrate that quantum-mechanical optimization of the hydrogen positions relative to their heavy-atom frames considerably improves the fit of experimental residual dipolar couplings to structural coordinates. The calculations indicate that deviations of the imino N-H vectors in RNA U and G bases result from H-bonding within the base pair and are dominated by the attractive interaction between the H atom and the electron density surrounding the H-bond-acceptor atom. DFT optimization of H atom positions is impractical in structural biology studies. We therefore have developed an empirical relation that predicts imino N-H vector orientations from the heavy-atom coordinates of the base pair. This relation agrees very closely with the DFT results, permitting its routine application in structural studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of N-H...N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances.

Hydrogen bond networks stabilize RNA secondary and tertiary structure and are thus essentially important for protein recognition. During structure refinements using either NMR or X-ray techniques, hydrogen bonds were usually inferred indirectly from the proximity of donor and acceptor functional groups. Recently, quantitative heteronuclear J(N,N)-HNN COSY NMR experiments were introduced that al...

متن کامل

Accurate measurement of 15N-13C residual dipolar couplings in nucleic acids.

New 3D HCN quantitative J (QJ) pulse schemes are presented for the precise and accurate measurement of one-bond 15N1/9-13C1', 15N1/9-13C6/8, and 15N1/9-13C2/4 residual dipolar couplings (RDCs) in weakly aligned nucleic acids. The methods employ 1H-13C multiple quantum (MQ) coherence or TROSY-type pulse sequences for optimal resolution and sensitivity. RDCs are obtained from the intensity ratio ...

متن کامل

31P chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals.

The low density of protons in nucleic acids and the paucity of long-range NOE restraints make NMR structure determination a notoriously difficult problem.1 Measurement of residual dipolar couplings for nucleic acids dissolved in a dilute aqueous liquid crystalline medium can alleviate this problem,2-5 but does not provide direct information on the phosphodiester linkages connecting the nucleoti...

متن کامل

Application of dipolar coupling data to the refinement of the solution structure of the sarcin-ricin loop RNA.

Residual dipolar couplings can provide the long-range information that most NMR solution structures lack. The use of such data in protein structure determinations is now fairly routine, but even though these data should be much more useful for nucleic acids, their application to nucleic acid structure determination is still in its infancy. Here we present a method for producing accurate, dipola...

متن کامل

Erratum: Application of correlated residual dipolar couplings to the determination of the molecular alignment tensor magnitude of oriented proteins and nucleic acids.

Residual dipolar couplings (RDC) between nuclear spins in partially aligned samples offer unique insights into biomacromolecular structure and dynamics. To fully benefit from the RDC data, accurate knowledge of the magnitude ( D (a)) and rhombicity ( R ) of the molecular alignment tensor, A, is important. An extended histogram method (EHM) is presented which extracts these parameters more effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2012